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4. The Learning Problem FSAN/ELEG815

The Learning Problem - Outline

I Example of machine learning

I Components of Learning

I A simple model

I Types of learning

I Puzzle
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Example: Predicting How a Viewer Will Rate a Movie

10 % improvement = 1 millon dollar prize

The essence of machine learning:

I A pattern exists.

I We cannot pin it down mathematically.

I We have data on it.

A pattern exists. We don’t know it. We have data to learn it.
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Movie Rating

I Describe the movie as an
array of factors

I Describe each viewer using
same factors

I Rating based on
match/mismatch

I More factors → better
prediction

A model for movie rating
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The Learning Approach

The learning algorithm does reverse-engineering (estimates factors from a
given rating).
I Starts with random

(meaningless) factors
I Tunes factors to be aligned

with a previous rating.
I Does the same for millions

of ratings, cycling over and
over.

I Eventually the factors are
meaningful (complete).
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Components of Learning

Metaphor: Credit approval
Applicant information:

age 23 years
gender male

annual salary $30,000
years in residence 1 year

years in job 1 year
current debt $15,000

... ...

Approve credit?
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Components of Learning

Formalization

I Input: x (customer application)

I Output: y (good/bad customer?)

I Target function: f : X →Y (ideal credit approval formula)

I Data: (x1,y1),(x2,y2), · · · ,(xN ,yN ) (historical records)
↓ ↓ ↓

I Hypothesis: g : X →Y (formula to be used)

The goal of learning is: g ≈ f
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I Learning algorithm chooses g from
H that best matches the target f
on the training examples.

I Hopefully, g will match f on new
costumers.
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Why choose from a hypothesis set
instead of anything?

I No downside (always choose from:
Linear formulas, Support Vector
Machines, Neural Networks, all of
them...).

I Upside: It will allow us to tell how
well we can learn.
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Solution Components

Two solution components of
the learning problem:

I The Hypothesis Set or
Model
H = {h} g ∈H

I The Learning Algorithm

Together, they are referred to
as the learning model.
You choose them to solve the
problem.
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Example: Advertising

Data: sales of a product in 200 different markets, with advertising budgets in:
TV, radio, and newspapers.
Goal: predict sales on the basis of the three media budgets.

Advertising budgets are input variables:
I x1: TV budget
I x2: Radio budget
I x3: Newspaper budget

The output variable, y: Sales.
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Example: Advertising
Display sales as a function of TV, radio, and newspaper budgets. Blue line is a
model to predict sales:

Suppose we observe a response y and d different predictors, x = {x1, ...,xd}.
We can write the form:

y = f(x)+ ε

where ε is a random error term, which is independent of x and has mean zero.
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Example: Wage Data (Atlantic US)
Model wages in relation to education, age, and year.
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What conclusion do you see from each?
Prediction on wage is based on age, education and year.
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Motivation
y = f(x)+ ε

Example: Plot of income versus years of education for 30 individuals:

Learning estimates f .
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Why Estimate f

I Prediction
Since the error term averages to zero, we can predict y using

ŷ = g(x)

where g is our estimate for f , and ŷ is our estimate for y.
The expected value of the squared difference between the predicted and
actual value of y:

E[y− ŷ]2 = E[f(x)+ ε−g(x)]2

= [f(x)−g(x)]2 + var[ε]

where the first term is called Reducible error, and the second term is
Irreducible error.
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Why Estimate f
Inference:
Instead of predicting y, we are interested in the relationship between y and x:
I Which predictors are important?

I What is the relationship between the response and each predictor?

I Can the relationship be summarized by a linear equation or is it more
complicated?

Different methods for estimating f may be appropriate:
I Linear models are simple and interpretable, but not always accurate.

I Non-linear approaches provide accurate predictions for y, but less
interpretable.
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How to Estimate f

I Parametric
For example:

g(x) = w0 +w1x1+, ...,+wdxd
Estimates f by estimating a set of parameters.
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How to Estimate f
I Non-parametric

Estimate f getting as close to the data points as possible. Avoids
functional form for f .
For example, a thin-plate spline is used:

Disadvantages:
I Large number of observations are needed.
I Overfitting data.
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A Simple Hypothesis Set - The ’Perceptron’

Metaphor: Credit approval
Input: x = x1, · · · ,xd ’attributes of a customer’

Approve credit if
d∑
i=1

wixi > threshold

Deny credit if
d∑
i=1

wixi < threshold

This linear formula h ∈H can be written as

h(x) = sign
 d∑

i=1
wixi

− threshold

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h(x) = sign
 d∑

i=1
wixi

− threshold


h(x) =
{

1 if ’approved’
−1 if ’deny credit’

Linearly separable data in two-dimensions.
Line (w1x1 +w2x2− theshold = 0) splits the
plane into: +1 and −1 decision regions.
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h(x) = sign
 d∑

i=1
wixi

+w0


where w0 =−threshold. Introduce an
artificial coordinate x0 = 1:

h(x) = sign
 d∑
i=0

wixi


In vector form, the perceptron is

h(x) = sign(wTx)

Linearly separable data in two-dimensions.
Line (w0 +w1x1 +w2x2 = 0) splits the plane

into: +1 and −1 decision region.
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The Perceptron Learning Algorithm (PLA)
Simple learning algorithm that
determines w based on data.

h(x) = sign(wTx)

Given the training set:

(x1,y1),(x2,y2), · · · ,(xN ,yN )

pick a misclassified point:

sign(wTx) 6= yn

and update the weight vector:

w←w+ynxn

Misclassified point: sign(wT x) =−1

Misclassified point: sign(wT x) = 1
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The Perceptron Learning Algorithm (PLA)

The update adds or subtracts a vector
xn depending on yn ∈ {−1,1}

w←w+ynxn

making the point more likely to be
correctly classified.

sign(wT x) =−1. Iteration: w←w+x such
that sign(wT x) = 1

sign(wT x) = 1. Iteration: w←w−x such
that sign(wT x) =−1
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Iterations of PLA

I One iteration of the PLA:

w(t+1)←w(t)+y(t)x(t)

where (x(t),y(t)) is a misclassified
training point.

I At iteration t= 1,2,3, · · · , pick a
misclassified point from

(x1,y1),(x2,y2), · · · ,(xN ,yN )

and run a PLA iteration on it.

Iteration rule moves the boundary
(w0 +w1x1 +w2x2 = 0) to correctly classify

the misclassified point ⊕
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Example: One iteration of the PLA when the picked misclassified point is
(x,+1)

w(t+1)←w(t)+y(t)x(t) = w(t)+x(t)

Iteration rule moves the boundary to correctly classify the misclassified point
Stops when there is no more misclassified points
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A real data set

16x16 pixels gray-scale images of digits from the US Postal Service Zip Code
Database. Goal: recognize the digit in each image.

Not a trivial task (even for a human). Typical human error Eout is 2.5% due
to common confusions between {4,9} and {2,7}.

Machine Learning tries to achieve or beat this error.
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Input Representation

Since the images are 16×16 pixels:
I ‘raw’ input

xr = (x0,x1,x2, · · · ,x256)

I Linear model:
(w0,w1,w2, · · · ,w256)

Too many many parameters.
A better representation needed.

Features: Extract useful information,
e.g.,
I Average intensity and symmetry

x = (x0,x1,x2)

I Linear model: (w0,w1,w2)
The descriptors must be representative of the data.
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Symmetry of an Image
Let S be the symmetry of a grayscale image I ∈ R16×16:

S =−Sh+Sv
2

when

Sv = 1
256

16∑
i=1

16∑
j=1
|I[i, j]− Ifv[i, j]|

where Ifv is the image I flipped vertically. And,

Sh = 1
256

16∑
i=1

16∑
j=1
|I[i, j]− Ifh[i, j]|

where Ifh is the image I flipped horizontally.
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Error Measure

Overall error E(h,f) = average of pointwise errors e(h(x),f(x)).

In-sample error:

Ein(h) = 1
N

N∑
n=1

e(h(xn),f(xn))

Out-of-sample error:

Eout(h) = Ex[e(h(x),f(x))]
We do not know Eout(h) since P on X is unknown.
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Illustration of Features
x = (x0,x1,x2) x0 = 1

Almost linearly separable. However, it is impossible to have them all right.



30/95

4. The Learning Problem FSAN/ELEG815

Input Representation

Since the images are 16×16 pixels:
I ‘raw’ input

xr = (x0,x1,x2, · · · ,x256)

I Linear model:
(w0,w1,w2, · · · ,w256)

Too many many parameters.
A better representation needed.

Features: Extract useful information,
e.g.,
I Average intensity and symmetry

x = (x0,x1,x2)

I Linear model: (w0,w1,w2)
The descriptors must be representative of the data.
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What Perceptron Learning Algorithm does?
Evolution of in-sample error Ein and
out-of-sample error Eout as a function
of iterations of PLA

I Assume we know Eout .
I Ein tracks Eout. PLA generalizes

well!

I It would never converge (data not
linearly separable).

I Stopping criteria: Max. number
of iterations.

Final perceptron boundary
We can do better...
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The ‘pocket’ algorithm

Keeps ‘in its pocket’ the best weight vector encountered up to the current
iteration t in PLA.

PLA Pocket
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Classification boundary - PLA versus Poket

PLA Pocket
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The Learning Problem - Outline

I Example of machine learning

I Components of learning

I A simple model

I Types of learning

I Puzzle
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Basic Premise of Learning

“observations to uncover an underlying process”

broad premise → many variations

I Supervised Learning

I Unsupervised Learning

I Reinforcement Learning
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Supervised Learning
Example from vending machines - coin recognition

(a) Training data: Mass-Size of pennies, nickles, dimes and quarters (1,5,10, and 25 cents)
(b) A classification rule is learned from the data (Linear Model).

Correct output is specified by colors → Supervised
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The Classification Setting

Estimate f based on training {(x0,y0) , · · · ,(xn,yn)}
Training error rate:

1
n

n∑
i=1

I(yi 6= ŷi)

with I (yi 6= ŷi) =
1 if yi 6= ŷi

0 if yi = ŷi.
.

Here, ŷi is the predicted class label for the ith observation using f̂ .
Test error rate:

Ave(I(y0 6= ŷ0))
A good classifier is one for which the test error is smallest.
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The Bayes Classifier
The test error rate is minimized, on average, by the Bayes classifier that
assigns each observation to the most likely class, given its predictor values.
That is assign x0 to class j for which

Pr(Y = j|X = x0) is largest.

The purple dashed line: Bayes decision boundary for two groups.
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Bayes classifier produces the lowest possible test error rate

1−E
(

max
j
Pr(Y = j|X)

)

For previous example, this value is 0.1304.
I For real data, the conditional distribution of Y given X is not known, and

so computing the Bayes classifier is impossible.
I Bayes classifier serves as an unattainable gold standard.
I Many approaches attempt to estimate the conditional distribution of Y

given X.
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K-Nearest Neighbors Classifier

Given a positive integer K and a test observation x0, the KNN classifier:
I Identifies the K points in the training data that are closest to x0,

represented by N0.
I Estimate the conditional probability for class j as the fraction of points in
N0 whose response values equal j:

Pr(Y = j|X = x0) = 1
K

∑
i∈N0

I(yi = i).

I Applies Bayes rule and classifies the test observation x0 to the class with
the largest probability.
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K-Nearest Neighbors Classifier

Example for K = 3:

Since Pr(Y = blue|X) = 2/3, KNN will predict the point to be blue. We do
this for all possible value for X1 and X2 to form the right plot.
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K-Nearest Neighbors Classifier
Example with K = 10 in 100 observations. Black curve indicates the KNN
decision boundary using K = 10. The Bayes decision boundary is a purple
dashed line.

Test error rate for KNN is 0.1363, and Bayes error rate is 0.1304.
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K-Nearest Neighbors Classifier

Choice of K

As K grows, KNN becomes less flexible and decision boundary is close to
linear: low-variance but high-bias classifier.
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K-Nearest Neighbors Classifier
KNN test and training errors as a function of 1/K. As 1/K increases, the
method becomes more flexible.

Observe that U-shape in the test error rate.
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Unsupervised Learning

Instead of (input, correct output), we get (input, ? )

Finds patterns and structure in input data
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Unsupervised Learning

Instead of (input, correct output), we get (input, ? )

The number of clusters is ambiguous!
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Classification Using K-means Clustering
I Partition of a set X , of observations into a specified number, k, of

clusters.
I Assign to the cluster with the nearest mean.
I Iterative procedure.
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Classification Using K-means Clustering

I Let Z be the dataset of the form

Z = {z1,z2, ...,z|X |}

where z ∈Rn
I We want to classify the data into k

disjoint sets of the form

C = {C1,C2, ...,Ck}

such that the criterion of optimality is
satisfied

argmin
C

=
 k∑
i=1

∑
z∈Ci

‖z−mi‖2

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K-means Algorithm

I First, k initial means are generated
at random: mi(1), i= 1,2, ...,k

I Assign samples to clusters whose
mean is the closest.

I Update the clusters’ means

mi(t) = 1
|Ci|

∑
z∈Ci

z i= 1,2, ...,k

where |Ci| is the number of
samples in cluster set Ci.
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K-means Algorithm

I Compute residual error, E, as the
sum of the k Euclidean norms of
the differences between the mean
vectors in the current and previous
steps. Stop if E ≤ T , where T is a
specified threshold.
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Reinforcement Learning
Instead of (input, correct output),
we get (input,some output, grade for this output)

target function → best action given a
state

Not a trivial task!
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Reinforcement Learning
Instead of (input, correct output),
we get (input,some output, grade for this output)

Reinforcement learning...

I Takes some action and reports
how well things went.

I Repeats many times.

I Sorts out the information from
different examples.
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Reinforcement Learning
Instead of (input, correct output),
we get (input,some output, grade for this output)

Eventually learns the best line of play.

The world champion was a neural
network!
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A Learning Puzzle

Training examples (x): 9-bit vector represented as a 3×3 black&white array.
First row: f(x) =−1
Second row: f(x) = +1



55/95

4. The Learning Problem FSAN/ELEG815

A Learning Puzzle
Task:
I Learn from data what f is
I Apply f to test input at the bottom. Do you get +1 or −1?
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A Learning Puzzle
There is more than one possible solution:
I if f(x) = +1 when pattern is symmetric:



57/95

4. The Learning Problem FSAN/ELEG815

A Learning Puzzle
I if f(x) = +1 when the top left square is white:
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Review

I Learning is used when
I A pattern exists
I We cannot pin it down

mathematically
I We have data on it

I Focus on supervised learning
I Unknown target function y = f(x)
I Data set (x1,y1), · · · ,(xN ,yN )
I Learning algorithm picks g ≈ f from a

hypothesis set H

Example: Perceptron Learning
Algorithm

I Learning an unknown
function?
I Impossible!. The function can assume

any value outside the data we have.
I So what now?
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Feasibility of Learning - Outline

I Probability to the rescue

I Connection to learning

I Connection to real learning

I A dilemma and a solution

I Errors and noise

Goal: Showing that we can infer something outside the data set D.
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A Related Experiment

I Consider a ’bin’ with red and
green marbles.

P[picking a red marble] = µ

P[picking a green marble] = 1−µ
I The value of µ is unknown to us.

I Pick a random sample of N
independent marbles

I We know the fraction of red
marbles in sample ν
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Does ν say anything about µ?
No!

Sample can be mostly green while bin
is mostly red.

Although this is possible, it is not
probable.

Yes!

Sample frequency ν is likely close to
bin frequency µ when N large enough

possible versus probable
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What does ν say about µ?

In a big sample (large N), ν is probably close to µ (within ε) i.e.
P[|ν−µ|> ε] is very small.

Formally, we can bound this probability by:

P[|ν−µ|> ε]≤ 2e−2ε2N for any ε > 0

Hoeffding’s Inequality.

As the sample size N grows, it is exponentially unlikely that ν will deviate
from µ by more than our ’tolerance’ ε.

The statement “µ= ν” is Probably and Approximately Correct (P.A.C).
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What does ν say about µ?
P[|ν−µ|> ε]≤ 2e−2ε2N for any ε > 0

Hoeffding’s Inequality.

Notice that if ε very small (better
approximation), larger sample N is
needed to make the RHS of Inequality
small.
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Hoeffding’s Inequality

P[|ν−µ|> ε]≤ 2e−2ε2N

I Valid for all N and ε

I Bound does not depend on µ

I Tradeoff: N , ε, and the bound

I ν ≈ µ =⇒ µ≈ ν

I ν tends to be close to µ.
I We infer that µ ’tends’ to be close to
ν.
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Connection to Learning

Bin: The unknown is a number µ

Learning: The unknown is a function
f : X →Y
How does the bin model relate to the
learning problem?

Let’s assume each marble • is a point
x ∈ X

E.g. each marble is a credit card
applicant.
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Connection to Learning

Now, let’s relate the colors:

Taking any single hypothesis h ∈H
and comparing it to f on each point
x ∈ X :

•: Hypothesis got it right h(x) = f(x)

•: Hypothesis got it wrong h(x) = f(x)

Color of each point is unknown since
f is unknown but now there is a
probability associated.
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Back to the Learning Diagram

We introduce a new component:

A probability distribution P on X .
I P is any probability distribution.
I No need to know P
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Connection to Learning

I Pick x at random according to P

I Each point will be red with some
probability µ.

I The space X behaves like the bin

I Training examples play the role of
a sample from the bin

I Color of each sample point will be
known to us =⇒ we know ν
I h(xn) and f(xn) are known in the

data set D.
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Connection to Learning

I Any P will translate to µ
(unknown).

Thus, Hoeffding Inequality can be
applied.
Predict outside D, using ν to predict µ.

µ will tell us the error rate h
makes in approximating f .
I ν ≈ 0→ h≈ f over all X
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Are we Done?

No! h is fixed before we generate the
data sets D

For this h, ν generalizes to µ

This is ‘verification’ of h, not
learning

No guarantee ν will be small.

We need to choose from multiple h’s.
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Multiple Bins

Generalizing the bin model to more than one hypothesis:
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Back to the Learning Diagram

Both µ and ν depend on which hypothesis h

ν is ’in sample error’ denoted by Ein(h)

µ is ’out of sample error’ denoted by Eout(h)

The Hoeffding inequality becomes:

P[|Ein(h)−Eout(h)|> ε]≤ 2e−2ε2N
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Notation with Multiple Bins
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Are we done already?
No! Hoeffding doesn’t apply to multiple bins.
Why doesn’t apply?
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Coin Analogy

Question: If you toss a fair coin 10 times, what is the probability that you
will get 10 heads?

Answer: ≈ 0.1%

Question: If you toss 1000 fair coins 10 times each, what is the probability
that some coin will get 10 heads?

Answer: ≈ 63%

In this case the in-sample probability does not approximate the real probability.

Why?
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From Coins to Learning

I Fair coin → Bins are half red, half green (µ=1/2).
I It is not BINGO. We tried so hard that eventually happens.
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A Simple Solution

P[|Ein(g)−Eout(g)|> ε] ≤ P[ |Ein(h1)−Eout(h1)|> ε

or|Ein(h2)−Eout(h2)|> ε

· · ·
or|Ein(hM )−Eout(hM )|> ε]

≤
M∑
m=1

P[|Ein(hm)−Eout(hm)|> ε]
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A Simple Solution

P[|Ein(g)−Eout(g)|> ε] ≤ P[ |Ein(h1)−Eout(h1)|> ε

or|Ein(h2)−Eout(h2)|> ε

· · ·
or|Ein(hM )−Eout(hM )|> ε]

≤
M∑
m=1

P[|Ein(hm)−Eout(hm)|> ε]
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The Final Verdict

P[|Ein(g)−Eout(g)|> ε] ≤∑M
m=1P[|Ein(hm)−Eout(hm)|> ε]

≤∑M
m=1 2e−2ε2N

P[|Ein(g)−Eout(g)|> ε]≤ 2Me−2ε2N
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Remembering the Learning Diagram
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Error Measures
What does “h≈ f” mean?
I To quantify how well g approximates f , we need to define an error

measure:
Error = E(h,f)

where E(h,f) is based on the entirety of h and f .
I Errors on individual input points x is almost always considered
e(h(x),f(x)). Examples:
I Squared error:

e(h(x),f(x)) = (h(x)−f(x))2

I Binary error:
e(h(x),f(x)) = [h(x) 6= f(x)]

What are the criteria for choosing one error measure over another?
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From Pointwise to Overall

Overall error E(h,f) = average of pointwise errors e(h(x),f(x)).

In-sample error:

Ein(h) = 1
N

N∑
n=1

e(h(xn),f(xn))

Out-of-sample error:

Eout(h) = Ex[e(h(x),f(x))]
We do not know Eout(h) since P on X is unknown.
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The Learning Diagram - with Pointwise Error

I Decide if g ≈ f (our goal) based
on pointwise error measure on a
point g(x)≈ f(x).

I The point x comes from the same
probability distribution P

When testing, use points drawn from
the same probability distribution
(requirement to invoke Hoeffding).
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How to Choose the Error Measure?

Example: Fingerprint verification:
I Two types of error:
false accept and false reject

I How do we penalize each type?

f
+1 −1

+1 no error false accepth −1 false reject no error
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The Error Measure - for Supermarkets
Supermarket verifies fingerprint for
discounts
I false reject is costly; customer

gets annoyed.

I false accept is minor; gave away a
discount and intruder left their
fingerprint

f
+1 −1

+1 0 1h −1 10 0



86/95

4. The Learning Problem FSAN/ELEG815

The Error Measure - for the CIA

CIA verifies fingerprint for security
I false accept is a disaster.

Unauthorized person gets access.

I false reject can be tolerated.
You are an employee. Try again.

f
+1 −1

+1 0 1000h −1 1 0
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The Error Measure - Conclusion

I The error measure should be specified by the user, it is not determined
during the learning process.

Not always possible:

I User does not provide any.

I Difficult objective function to optimize. Alternatives:

I Plausible measures: squared error ≡ Gaussian noise

I Friendly measures: closed-form solution, convex optimization.
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The Learning Diagram - Including Noisy Target

I Quantify how well g
approximates f .

I The learning algorithm
minimizes the error
measure (in-sample error).

I Different error measures
may lead to different final
hypothesis.
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Noisy Targets
The ‘target function’ is not always a function.
I The output is not uniquely determined by the input.

Consider the credit-card approval:

age 23 years
gender male

annual salary $30,000
years in residence 1 year

years in job 1 year
current debt $15,000

... ...

Two ‘identical’ customers (same x) → two different credit behaviors.
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Noisy Targets
Instead of y = f(x), we use target distribution:

P (y|x)

(x,y) is now generated by the joint distribution:

P (x)P (y|x)

Noisy target = deterministic target f(x) = E(y|x) plus noise ε= y−f(x)

y = f(x)+ ε

Deterministic target is a special case of noisy target:

P (y|x) is zero except for y = f(x)

There is no lose of generality.
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The Learning Diagram - including noisy target
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Distinction between P (y|x) and P (x)

I Both convey probabilistic aspects
of x and y.

I The target distribution P (y|x) is
what we are trying to learn.

I The input distribution P(x)
quatifies relative importance of the
point x in gauging how well we
have learned.

I Merging P (x)P (y|x) as P (x,y)
mixes the two concepts.
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What we Know so Far

Learning is feasible in a probabilistic sense. It is likely that

Eout(g)≈ Ein(g)

Is this learning?
We need g ≈ f , which means

Eout(g)≈ 0
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The 2 Questions of Learning

Eout(g)≈ 0 is achieved through:

Eout(g)≈ Ein(g) and Ein(g)≈ 0

Learning is thus split into 2 questions:

1. Can we make sure that Eout(g) is close enough to Ein(g)?

2. Can we make Ein(g) small enough?
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What the Theory will Achieve

I Characterizing the feasibility of
learning for infinite M

I Characterizing the tradeoff:

Model complexity ↑ Ein ↓
Model complexity ↑ Eout−Ein ↑
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